Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane
نویسندگان
چکیده
In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.
منابع مشابه
COMPARISON OF DIFFERENT GLASS COMPOUNDS FOR INTRINSIC FIBER OPTIC TEMPERATURE SENSORS
Different glasses suitable for temperature sensing in the fiber optic sensors were studied in this article. The phase changes for eight different glass materials were calculated and results were compared. Our results showed that extra dense flint glass is the most sensitive one, while pure silica results in the lowest phase change. In another study the effect of wavelength on the phase variatio...
متن کاملHighly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique
In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a line...
متن کاملLiquid Seal for Temperature Sensing with Fiber-Optic Refractometers
Liquid sealing is an effective method to convert a fiber-optic refractometer into a simple and highly sensitive temperature sensor. A refractometer based on the thin-core fiber modal interferometer is sealed in a capillary tube filled with Cargille oil. Due to the thermo-optic effect of the sealing liquid, the high refractive-index sensitivity refractometer is subsequently sensitive to the ambi...
متن کاملFiber-Optic Sensor-Based Remote Acoustic Emission Measurement in a 1000 °C Environment
Recently, the authors have proposed a remote acoustic emission (AE) measurement configuration using a sensitive fiber-optic Bragg grating (FBG) sensor. In the configuration, the FBG sensor was remotely bonded on a plate, and an optical fiber was used as the waveguide to propagate AE waves from the adhesive point to the sensor. The previous work (Yu et al., Smart Materials and Structures 25 (10)...
متن کاملFiber-Tip Fabry-Perot Interferometric Sensor based on a Thin Silver Film
Fiber-optic sensors have many advantages, including small size, light weight, immunity to electromagnetic interference, and the capability of remote sensing. Fiber-tip sensors are fabricated on a fiber tip and are the smallest type of fiber-optic sensor. The fiber-tip sensors have attracted a great deal of attention in past years for pressure, temperature, and acoustic sensing. In this thesis, ...
متن کامل